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The thermal diffuse scattering (TDS) contribution to X-ray Bragg peaks is discussed in terms of its 
two experimental components, the included and the background parts. The discussion is primarily 
directed towald situations where detailed elastic constant information and a large computer are not 
available. Graphs are displayed which, in the spherical average approximation, allow an accurate 
assessment of the influence of all the experimental variables on the TDS contribution. It is shown that, 
even in the general case where spherical averaging is a poor approximation, the included TDS varies 
linearly with length of scan for small scans. A technique for determining the constant of proportionality 
is suggested. Thus the included TDS may be evaluated even though the elastic constants are not known. 

1. Introduction 

The measurement of an integrated Bragg reflection 
will in general contain an unwanted component due 
to thermal diffuse scattering (TDS). A nearly exact 
expression for the TDS has been known for many 
years (e.g. James, 1948), but only recently have there 
been serious analytical and numerical approximations 
to the integrals required to apply this expression to an 
evaluation of the unwanted component (Walker & 
Chipman, 1970; Rouse & Cooper, 1969; and other 
references given by these authors). Although these 
authors have given methods for calculating the TDS 
contribution with great accuracy in specific cases, they 
have not presented their results in such a way as to 
make clear how these results depend on the various 
experimental parameters, except in a limited number 
of examples. Similarly, their results are not easily 
adaptable to making a rapid approximation to the 
correct value. 

We will show that it is most convenient to consider 
the total TDS fraction in terms of its two experimental 
constituents, the included part and the background 
(or slit) part. We present graphs which allow an 
estimate of each of these parts and which show clearly 
the influence of the various experimental parameters. 
An understanding of the geometrical basis of these 
graphs permits their extension to many cases not 
explicitly covered and also suggests a technique for 
evaluating the included TDS in cases where information 
about the velocity of sound is not available. 

2. Formulation 

If  an ideally mosaic single crystal is scanned through a 
Bragg reflection, the total TDS fraction, c~T (defined 
as the ratio of the total integrated thermal diffuse power 
to the integrated Bragg power), is approximately 
(Cochran, 1969; Walker & Chipman, 1970) 

L I 2Kn(z)dV CeT . . . . . .  (1) 
7~ Kavg q2 " 

The integral is over the active volume in reciprocal 
space as shown in Fig. 1. A position in reciprocal space 
is defined by its distance q and direction Z from the 
reciprocal lattice point (relp) H. Such. a direction is 
called a rekha by Ramachandran & Wooster (1951) 
and the associated parameter K~(X) is called the rekha 
constant. It is defined in terms of the sound velocities 
associated with the rekha Z. In a typical experimental 
arrangement, the principle approximation in equation 
(1) is the neglect of the necessary convolution arising 
from geometry, wavelength spread and mosaicity; the 
other approximations, such as the restriction to first 
order TDS, become exact in the limit of small scans 
and involve corrections of a few per cent in typical 
cases. The parameter L is given by 

L = 4n sin 2 0 kBT Kuvg/~) . (2) 

The approximation does not distinguish the scattering 
angle 20 from the double Bragg angle. The average 
energy per vibrational mode is kBT and Kavg is obtained 
by averaging KH(Z) over all rekhas. This procedure 
requires a knowledge of the elastic constants, and is 
discussed in detail elsewhere (Rouse & Cooper, 1970; 
Walker & Chipman, 1969). If detailed elastic constant 
data are not available, Kavg may be expressed as 
1 2 /0 Vavg, with 0 the density and Vavg an average sound 
velocity. (See §§ 4 to 6). 

As first shown by Skelton & Katz (1969), a great 
simplification of equation (1) may be effected through 
application of the divergence theorem. 

L I KH(2) a T = - -  2g--- d z .  (3) 
~z / a v g  

Here g is the distance to the surface of the active 
volume along the rekha Z, and the integral is carried 
out over all elements of solid angle. In the case that 
the surface of the active volume is composed of a 
number of plane surfaces, it is convenient to re-express 
this: 

L ( KH(Z) dA 
C~T . . . . .  2n - -  - (4) 

n ~T Kavg g2 
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where n is the normal  distance from the relp to the 
element of  surface area, and the integral is carried out 
over the total bounding surface shown in Fig. 1. 

The values of  aT are not the most interesting 
quantities f rom a practical point of  view. Almost  
always one wants the amount  of  TDS power included 
after making  an integrated background subtraction; 
the most  usual technique is to multiply the average 
power at the ends of  the scan by the time required to 
carry out the scan. Al though it is easy to generalize to 
asymmetric scans, the notation is simplified by restric- 
tion to scans symmetl ic  about the relp. The integrated 
background,  expressed as a fraction of  the integrated 
Bragg reflection, is then found to be given by an ex- 
pression identical with equation (4), except that the 
integral is carried out over only the slit surface depicted 
in Fig. 1. We therefore denote this quanti ty by as, 
which is also a convenient measure of the TDS power 
(for an example e f  such usage, see Jennings, 1969). Fi- 
nally, the fraction of  TDS included in a usual Bragg scan 
az is given again by the same integral, but over the 
included surface defined in Fig. 1. The geometric in- 
terpretation of the ~'s is given in Fig. 3(a); they are related 
by aT=ax+as. The components are not only simpler 
but  more important  than the total: the included 
fraction is needed to correct observed Bragg intensities, 
and the slit fraction may  be used to assess the accuracy 
of  the model  being used, or even to obtain elastic 
constants. 

The values of  the cds depend on the angular height 
and width of the receiving slit, h and w; the total angle 
of crystal rotation, f2; the type of scan, defined by the 
angle V; the scattering angle, 20; and the angular  
dependence of  the reldaa constant, Kn(Z). In spite of  
this imposing array of  variables, it is possible, with 
the aid of  a geometric understanding of  the situation 
and a few appropriate graphs, to make a rapid, 
meaningful  estimate of  the more important  required 
values. To this end, we consider the situation in the 
spherical average approximat ion:  we assume th.at 
Kn(z) is given by Kavg, independent o fz .  This situation 
is identical with that considered by Skelton & Katz 
(1969) and by Cooper & Rouse (1968) and all the results 
o f  these authors may  be obtained from the graphs 
which we will present (except that Cooper & Rouse 
(1968) consider a less usual type of  background cor- 
rection). 

In the case of  symmetric scans, the required integrals 
may be reduced to a dimensionless form. It is usually 
most  convenient to use the slit width as the most 
important  parameter,  in which case we may sum- 
marize the situation by stating our working formula 

ai 1 f ),n dA 
L r ~ -  n , W g2 ' (5) 

where the i indicates either the slit surface or the 
included surface and the integral depends only on the 
shape parameters:  h/w, Q sin20/w, and V. In the 

Appendix,  the integrals are detailed in a form suitable 
for numerical  integration. 

3. Calculation of T D S  fract ion 

Consider first the case of  a square receiving slit: h/w= 1. 
From equation (5) we may then calculate as  and a1 as 
a function of.Q sin 20/w for various values of ~, as 
shown by the solid curves in Fig. 2. Within the stated 
approximations,  these curves depict both the included 
and the slit TDS fractions for any combinat ion of  slit 
width, length of scan, type of scan, and scattering 
angle. Thus one may see, in greater generality than in 
previous treatments, the influence of  the various 
experimental parameters. 

The main  features of the curves of Fig. 2 arise from 
the geometry of the active volume, particularly whether 
the included or slit surface is nearer the relp. Once 
these features are understood, it is possible to inter- 
polate the curves of Fig. 2 to an accuracy compatible 
with the other approximations,  i.e. about 10%. It is 
first important  to distinguish between cases where the 
slit moves more nearly normal to the Ewald sphere 
during the scan and those where it moves more nearly 
tangentially, i.e. whether ~, is greater or less than 45 °. 
The former case is completely contained in the small 
region between the curves A and B in the Figure. If  
one notes, in addition, the asymptotic behavior  

as  _ (4/n) (h/w) sin 2 ~, (for large £2) 
Lw • sin 20/w 

(6) 

it is clear that the necessary interpolations may be made 
easily. Normal  scans ( ~ =  90 °) are o f  interest because 

I 
(b) 

Fig. 1. Depiction of the active volume. The surface S is that 
portion of the Ewald sphere containing rays which are ac- 
cepted by the slit, which is assumed rectangular with an 
angular height and width of h and w. During a scan the 
Ewald sphere moves so that S is at a new position S'. We 
refer to either or both of these surfaces as the slit surface, or 
even as the slit. The boundaries of the slit generate four 
faces, which together form the included surface I. The re- 
gion between S and S" is the active volume V and its total 
surface is called T. In the case that the active volume is 
small, the bounding surfaces are approximately planar as 
shown in cross section in (b). During the scan the sample ro- 
tates an amount f2 with respect to the incident beam, and 
~, defines how the slit moves with respect to the Ewald 
sphere during the scan. By viewing the origin of the reciprocal 
lattice as being either below or to the side of the Figure, 

may be restricted to the range 0-90 ° . For an 09:20 scan 
(radial in reciprocal space), ~u=0, the Bragg angle. For an 
to scan (constant radius in reciprocal space), ~, = 90 o _ 0. For 
symmetrical scans the relp is centered on the Figure. 
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they give the most compact active volume; even if one 
has only a choke between o0 and co:20 scans, it is 
always possible to arrange a more nearly normal 
condition (~u > 45°). 

The nearly tangential case, ~ < 4 5  °, is more com- 
plicated, and we discuss, for simplicity, the case 
sin 2gt=sin 20. This discussion applies to an (.o:20 
scan with ~, = 0 or to an co scan with gt = 90 ° -  0. (The 
active volumes in the two cases are identical; only the 
orientations with respect to the origin differ.) The 

prominent feature of the nearly tangential case is the 
break occurring near f2/w =½. If, therefore, each curve 
is translated by a factor of sin 20 along each. coordinate 
axis, the breaks are nearly superposed, and interpola- 
tion becomes simple. This procedure is illustrated for 
the included fraction in the insert to Fig. 2(b). 

From the curves, one may easily discern the depen- 
dence of the TDS fractions on the experimental 
conditions. For example, since o0:20 and o0 scans are 
described by complementary values of ~, one such 
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Fig. 2. The reduced slit fraction (a) and the reduced included fraction (b) for various values of  the parameters  defined in Fig. 1. 
The insert in (b) applies to 03 or 03:20 scans only, but is useful in nearly tangential cases. The curves are labeled by letters 
indicating the ~ value and by subscripts indicating the ratio of slit height to width. For  example, the short  curve in the upper  
right of (b), whose label is omit ted because of space limitations, would be referred to as A 2 : ~ = 9 0  °, h/w=2. The curve C2 is 
obscured by B1. Note  the wide range of  ~' values contained between the neighboring curves ,4 and B. 
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scan is always described by a curve between A and B. 
The other scan is described by curves such as C, D, or 
E, and one may see that the included fraction is quite 
a different function of the parameters for the two types 
of scan. 

The dependences on the length of scan f2 and on 
slit width w are intimately related. The f2 dependence 
can be determined directly from the curves. The w 
dependence may be visualized by shearing the curves 
45 ° and reading from right to left; i.e. where e varies 
as f2 m, it also varies as w l-re. We may, for example, 
distinguish different regions for the included fraction. 
At small f2, c~z varies linearly withf2 and is independent 
of w. In the nearly tangential case only, there is a region 
of very strong dependence onf2 and inverse dependence 
on w. Finally, for large scans, c~z varies linearly with 
w and is independent off2. 

In contrast to the slit width, which is important 
because of its influence on the tangential case, the slit 
height is important only for large scans, where the 
slit area comes into play. [See equation (6).] Although 
such large scans might not be important in practice, 
we have shown enough cases in Fig. 2 that interpolation 
to almost any slit size is possible. 

The dependence on 0 is contained in the explicit 
factor sin 20, in the fact that V depends on 0 for the 
usual scan arrangements, and in the normalizing 
factor L. Equation (2) shows that L varies as sin z 0, 
which is the same angular dependence as the exponent 
in the Debye-WaUer factor. Thus one may simply 
determine the conditions under which the TDS cor- 
rection may be incorporated with the temperature 
factor. 

All the quantitative discussion has been within the 
spherical averaged approximation. Because of the 
distinction between longitudinal and transverse sound 
velocities, this approximation is not valid even for an 
isotropic material. However, the gross features of our 
results, which depend on geometrical considerations 
alone, will obtain even in the general case. The details 
will be changed, though. For example, the exact cor- 
respondence of o9 and co: 20 scans at complementary 
angles will be spoiled: in the approximately isotropic 
case, high angle scans are enhanced and low angle 
scans diminished for moderate scan lengths. Similarly, 
an co: 20 scan is enhanced vis-gl-vis an o9 scan at the 
same angle. 

Because of their simple form, the results given here 
may easily be convoluted with. the various instrumental 
broadenings, either analytically or by visualization of 
the smearing of the active volume. The magnitude of 
these effects has been estimated by Cochran (1969) 
and by Walker & Chipman (1970). We confine our 
discussion to the example of § 5. 

4. Small scans, anisotropic sample 

It is seen, in Fig. 2(b), that the included fraction varies 
linearly with scan length for small scans. We now 

show that this simple result obtains in the most general 
case, not merely in the spherical approximation. For 
a small scan, the included surface forms a narrow 
band. The width of this band, projected on the normal 
to the Ewald sphere, is just f2 sin 20. Assume that the 
band is so narrow that neither the rekha constant nor 
the distance from the relp changes appreciably across 
the band, i.e. f2 sin 20~w,12 sin 20/tan ~,~w, f2 sin 20 
~h.  (We do not preclude the case of an anisotropic 
sample or an irregular slit so that these quantities 
change along the band.) Then, if ~0 is the angular 
coordinate in the plane tangent to the Ewald sphere 
near the relp, we have from equation (3) 

Lf2 sin 20 ~2n KH(:p)dq) 

7r )o Kavg 

= 2L'f2 sin 20 (for small £2), (7) 

where L' is identical to L, except that Kavg is replaced 
by the value K~vg, which is K n averaged over the plane 
tangent to the Ewald sphere. To give a feeling for the 
distinction, we note that for an isotropic material 

1 [ 1 cos20 ( 1  1 ) ]  
K'avg= • Vt z - 2 V---}- V~ 

whereas 

Kavg=3e V~ +v~ " 

(8) 

(9) 

Vz and Vt are the longitudinal and transverse sound 
velocities. Note that, even for this simple model, K'  a v g  

displays an angular dependence while Kavg cannot. 
It should be noted that the restriction to small 

scans is not so limiting as might appear; any scan can 
be made 'small' through the use of a sufficiently large 
slit. So long as the scan is small, equation (7) applies 
independent of slit dimensions, of scan type parameter 
V, and of instrumental broadening as will be discussed 
later. In those cases for which it is applicable, equation 
(7) represents an enormous simplification over the 
more general (3) or (4) since, in the general case, the 
evaluation of each KnO() requires the inversion of a 
6 x 6 matrix. [See Rouse & Cooper (1969), equation 
(36) for the formula determining Kn.] 

5. Experimental estimate of the TDS contribution 

The foregoing discussion presumes at least some 
knowledge of the elastic constants or the velocity of 
sound. Depending on the availability of such infor- 
mation and on the accuracy required, it may not be 
feasible to use the simple methods discussed previously 
or even the most sophisticated computer calculation. 
For such cases, we suggest an experimental technique 
for estimating the TDS fraction, making use only of 
the same instrumentation required for the integrated 
reflection measurements. 



L. D. J E N N I N G S  617 

No broadening 
We make use of equation (7) as illustrated in Fig. 

3(a), which is a graph of the TDS power for a mono- 
chromated collimated ray impinging on a small sample 
with negligible mosaic spread. The abscissa is the 
amount of sample rotation and the units of power 
and/or of angle are adjusted so that areas are ex- 
pressed as fractions of the integrated Bragg reflection. 
In this case (no aberrations), the Bragg reflection would 
be very sharp, and the TDS fraction could be made 
negligible by use of a small scan. Nevertheless, suppose 
that we are restricted to scans larger than some 
minimum value,/2o. There would then be a minimum 
TDS contribution to the measured Bragg peak equal 
to the area A0. If the usual background subtraction 
were made, the desired quantity would be Ax= 
A0-f20P0. Since A1 is related to A0 by known quantities 
finding A0 is tantamount to obtaining A~. To find A0, 
we make use of the relations displayed in Fig. 3(a) 
together with equation (7) to show that 

E = A ' - Y 2 P =  - A 0 + 2  L'f2 sin 20 (for small(2). (10) 

NO BROADENING 
A = AREA IN RANGE .('/. l "  

= al + as / ~  

Experin~ental Quantities / ~  
A'(a) = A-Ao, a > a~, / \  
P(a,, a >  ao _/ =' ~ P o  

Hence ¢=S=9,P is ~ ~ ' , ~ P  
known ~ =s [ ~  

~ h , " "o  'J .I 

BROADENING 

FUNCTION,  W 

J'w x- I 

(b) 

WITH BROADENING / . ~  

A = AREA IN RANGE ,0, / 
= A~+A, = Az*As.+As~ / ~ (c1 

Experimental Quantities l . 
A'= A-A o, ,0, > ,O. o / A t \ 

PH and PL' '0" > ~° A '~= P. o 
• s F .  r,o .o 

+. °" :1 

Fig.3. Representations of the recei~ :d power vs. crystal scan 
angle. (a) TDS power in the case oI no experimental broad- 
ening. (b) Bragg diffracted power. The. curve also represents 
the resolution function W. (c) The col,volution of (a) and 
(b), representing the experimental TDS l, ower. The region 
g20 is unobservable because of interference from the much 
stronger Bragg reflection (b). 

For£2 >(20 the quantity E may be measured. Thus if E 
is plotted against .(2 a straight line should result; the 
intercept is the desired unknown area, A0, and the 
slope is related to the velocity of sound in the sample. 

With broadening 
In an actual experiment it is seldom possible to 

achieve negligible broadening from wavelength, mo- 
saicity, beam divergence, etc. The effect of all these 
broadenings may be represented either by smearing 
the active volume around a fixed relp or by a fixed 
active volume around a smeared relp. We take the 
latter point of view. Thus to each point in a region 
around the nominal relp we attach a weight. We 
alternatively refer to this weighting function as the 
broadening or resolution function. A little reflection 
shows that so long as the slit is large compared to the 
divergences (the usual case), it is only the projection 
of the weighting function on the line traced by the 
center of the slit which is important. This projection 
W is thus easily measured as the normalized profile 
of the Bragg peak; an example is shown in Fig. 3(b). 
The actual received TDS power is then the convolution 
of Fig. 3(a) with Fig. 3(b), resulting in the curve of 
Fig. 3(c). The region (20 would be obscured by the 
Bragg peak and the desired unknown area is again 
denoted by A0. Because W may, in general, be asym- 
metric, it is necessary to distinguish the high and low 
angle sides of the curve by the subscripts H and L as 
indicated in the Figure. Expressing the situation 
analytically, we have 

I W(x)o~s(2UH (11) ~ 2X~ 

PH = 2UH-- 2X dx 

I W(x) ~s(2UL + 2X) dx (12) 
PL = 2UL + 2X ..... 

A = A I + A s H + A s L  
= ½{g W(X)[O~z(2UH-- 2X) + ~z(2UL + 2x)]dx 
+ SW(x)~s(2u~-2x)dx + g W(x)~s(2uL + 2x)dx} (13) 

where c~1 and as are given by equations (1), (3), or (4) 
but with the integration understood to be over the 
appropriate surface of the active volume. The explicit 
argument of the c~'s is the value off2 in Fig. 1; the 
other parameters are understood. 

The experimental determination of the unknown 
area A0 is not nearly so simple in Fig. 3(c) as in Fig. 
3(a) because the convolutions spoil the simple rela- 
tionship between As and P. We wish first to suggest an 
approximate technique for this determination and then 
to give a few illustrations which will clarify the entire 
discussion. 

Motivated by the simplicity of the analysis of Fig. 
3(a), we rewrite equation (13), 

A =2(1 -~)  L'Y2 sin 20+UcHPH+UCLPL (14) 

where each term is, by definition, taken equal to the 
corresponding term in equation (13). The lack of 
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information is thus thrown into the correction param- 
eters e, ucH, and UCL. These parameters could be 
evaluated as a function of the u~ ( i= L or H) if the 
c~ ( i = I  or S) were known. Of course, this is not the 
case, but some information is known. For small £2, 

approaches zero with zero slope. For a narrow 
weighting function, W, or a large scan, the uc, ap- 
proach the corresponding u,. Thus, assuming for the 
moment that e, ueH, and UCL are known, we may write 

A' + 2eL' £2 sin 2 0 -  UCH P H  - -  U c L P L  = 

- A 0 + 2 L ' O s i n  20, (15) 

evaluate the left hand side from the experimental data, 
and plot the result versusf2 as before. An iteration may 
be necessary because of the presence of L' on both 
sides of the equation, but this is not really the trouble- 
some term. 

Suggested approximation 

The greatest difficulty in making use of equation (15) 
is the estimation of the uc~. Our proposal is that they 
be evaluated by replacing the unknown c~ in equations 
(11) to (13) by the corresponding quantities obtained 
using the spherical approximation. The necessary 
formulae are detailed in the Appendix. 

Illustration 

To assess the accuracy of this suggested approx- 
imation, one might compare its results with those 
obtained experimentally. It is at present, however, 
extremely difficult to obtain accurate experimental 
values for the TDS contained under a Bragg peak. 
Instead we have considered two samples which are 
taken to obey equation (1) exactly, one nearly isotropic 
and the other highly anisotropic. 

We have examined three different weighting func- 
tions: 

Wl(x)= 1-41x[, with x measured in degrees. Th.is 
triangular function simulates the use of slits producing 
horizontal divergence of 0-5 °, which would th.us be the 
minimum scan length for Wt. (W~ = 0  for Ixl > ¼.) 

W2(x) = fi(x + 0.17 °) + O(x - 0.17°). This function ap- 
proximates the effect of a Mo Kc~ doublet near 0 = 45 °. 
The minimum scan is 0.34 °, but the bulk of the weight 
is nearer the surface of the active volume than for W1. 

W3 is W1 folded with 1 o of vertical divergence. This 
folding has no influence on W(x), but the simulated 
experimental data were calculated with the more 
general 1413. 

Since each of these weighting functions is symmetric, 
we may drop the distinction between the two ends of 
the scan; thus we drop the subscripts H and L. It is 
of interest to consider three approximations to the 
unknown parameter in equation (15): 

Approximation 0: e = 0 ;  uc=u.  

Approximation 1: e=  0; uc = us, the value obtained 
using the spherical approximation. 

Approximation 2: Both e and uc obtained using the 
spherical approximation. 

For each case, we could evaluate the simulated 
experimental data and also exact values for all param- 
eters. Using the simulated data, we may evaluate the 
left hand side of equation (15) using any of the three 
approximations. Denote these values by E0, E1 and 
£'2. The effectiveness of the approximation could be 
displayed by plotting the E's versus £2 and seeing how 
well such plots yield the desired quantities A0 and L'. 
The same information can be displayed in a more 
compact form, without any fundamental change, by 
adding the linear function A o - 2 L f 2  sin 20 to each E. 
In this case the intercept should be zero and the slope 
2 ( L ' - L )  sin 20. Thus any deviation from a horizontal 
line displays the inadequacy of the spherical approx- 
imation (L' = L). 

In Fig. 4 we have plotted illustrative cases of the 
technique described above. The ordinates are reduced 
by the factor Lwo so that they are directly comparable 
with those in Fig. 2; w0 is the width of a standard slit, 
chosen as 3 ° for the example. Since, in these units, the 
included TDS is about unity for a typical length of 
scan, we note that an error of 0.1 in Fig. 4 represents 
about 10%. For each case, we show values obtained in 
each of the approximations (E3 will be discussed later). 
The solid curve shows the behavior of E0 or E1 if uc/u 
were chosen correctly. The dashed line shows the 
behavior of E2 if uc/u and ~ were chosen correctly. In 
an actual experiment the information required to plot 
the curves would not be available, but that required to 
plot the points would be. The effectiveness of the 
proposed approximation is determined by the degree 
to which the sets of points may be extrapolated to a 
zero intercept. 

A nearly isotropic case is represented in Fig. 4(a). 
Although an error of 10 - 20% might be anticipated 
with E0, the error using E1 or E_, would surely be 
smaller than other experimental errors. Note that the 
distinction between longitudinal and transverse velo- 
cities gives rise to a nonzero initial slope and to the 
failure of Ez to be exact at moderate scan lengths. 

Fig. 4(b) and (c) represent two different sample 
orientations for a reflection chosen to show the largest 
deviations from the spherical approximation. The 
apparent linearity [in Fig. 4(b)] of E1 out to large scans 
is a cancellation of the curvature toward the axis to 
be expected on account of anisotropy and the curvature 
downward to be expected on account of geometrical 
effects. This effect is shown again in Fig. 4(c) where 
the curvatures h.ave the same sign. The error in inter- 
cept in either case would be less than 0.1, but one might 
have less confidence in case 4(c) because of the ap- 
preciable curvature at the smallest feasible scans. One 
would therefore make use of a larger slit as shown in 
Fig. 4(d). The initial slope can be determined with 
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far greater accuracy in this case. Then, since the initial 
slope must be the same for any slit size, the intercept 
for the standard slit [Fig. 4(c)] could be estimated more 
precisely than otherwise. 
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The above illustrations made use of the weighting 
function I4/1, for which the standard deviation is only 

the minimum scan. Let us now consider the most 
unfavorable case: W2, for which the standard deviation 
is ½ the minimum scan. Unfortunately, this case is 
realized if a wavelength doublet is used. The plots for 
the isotropic case (not shown) are almost as favorable 
as in Fig. 4(a). For the most anisotropic case, we show 
in Fig. 4(e) and (f)  the plots which correspond to 4(e) 
and (d). One observes that, even using these two plots 
together, approximation E0 is virtually worthless, 
while E1 or Ez could give values within 10 - 20% of 
the correct ones. 

We made a few calculations using W3. As expected, 
they gave curves which were displaced only a small 
amount from those of Fig. 4. These small displace- 
ments were so nearly independent of scan length that 
the effect could not be displayed on the scale of Fig. 4. 

A guide to the size of the errors (arising from the 
weighting function) is given by the amount by which 
uc differs from u. In Fig. 4 we give values of uc/u for 
the smallest scans. In an actual experiment only the 
approximation us would be known; it is the difference 
between uc and us which gives rise to errors in the 
method. We also give values of us/u in Fig. 4. We see, 
for the examples considered, that when us/u is greater 
than, say, 0.9, there is only a small error entailed by 
replacing uc by us. Depending on the amount of 
anisotropy in the sample, this replacement becomes 
increasingly less satisfactory as us/u deviates further 
from unity. 

Fig.4. Plots to determine the unknown TDS fraction using the 
small scan approximat ion.  The points can be determined 
from experimental  data alone, using various approximat ions  
discussed in the text. Except for the case E3, the points  would 
fall on the curves if it were possible to choose uc correctly. 
For  a usual length of  scan, the TDS fraction is approx-  
imately unity in the units used and the degree to which the 
points can be extrapolated to the same intercept as the curves 
is a measure of the accuracy of the method.  For E3, the 
points should extrapolate to the marked intercept. The 
initial slope, 2(L'/L- 1) sin 20, is a measure of the devia- 
t ion f rom the spherical approximat ion,  uc/u is a measure 
of the effect of the broadening W and us/u is the spherical 
approximat ion to uc/u. Values of  these ratios for the smallest 
scans are given. Other values may be estimated by compar ing  
E0 and E1 to the curves. The vertical arrows show the 
smallest scan permit ted by the broadening function,  w0 is 
the width of a s tandard slit, 3 °. The curves are for a wave- 
length, near 0.7 A, which yields a Bragg angle of 45 °. The 
various curves are for the following material,  reflection 
(Miller indices and direction normal  to diffraction plane), 
weighting function, slit dimensions,  and scan type:  (a) tung- 
sten, (600) -  [001l, W], 3 ° x 3 o, normal  (gt =90°) .  (b) B-brass, 
(440)-[001],  W], 3 ° x  3 °, normal .  (e) /?-brass, (440)-[110],  
W1, 3 ° x 3  °, 0:20. (d) same, except 6 ° x 6  ° slit. (e) same, 
except W2 and 3 ° x 3 ° slit. ( f )  same, except 6 ° x 6 ° slit. For  
the wide slit cases (d) and (f) ,  Ez is negligibly different 
from El. 
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Experimental considerations 
For the reason mentioned, our illustrations have 

been based on simulated experimental data. We now 
discuss some of the considerations necessary in an 
actual experiment. The extent to which each of these 
need be taken into account depends on individual 
requirements. 

Units: Almost all of our discussion has made use 
of units such that areas, such as those in Fig. 3(c), are 
expressed as fractions of the integrated Bragg reflection 
reduced by the factor Lw. Furthermore, in Fig. (4), the 
experimental quantity E has been altered by a term A0 
2L sin20. These reduction parameters have been 
included here for pedagogic reasons only. In actual 
practice, the natural units would be used; so far as the 
determination of the included TDS area, one could 
use count-degrees per second. 

Angular factors: We have assumed throughout that 
the angular factor F 2 sin 2 0 varies inappreciably from 
its value at the relp. If the variation of this quantity is 
significant, the natural correction is to divide each 
datum by FZsin20/F~sin ~ 0n,where the subscript refers 
to values at the Bragg condition. 

Scan type: The interpretation of the TDS will in ge- 
neral be simpler if the surfaces of the active volume 
are as far as possible from positions where the weight- 
ing function is large. Since this condition is equivalent 
to keeping the Bragg reflection centered in the slit, it is 
not in general incompatible with other considerations. 
Scans lying in the range between A and B in Fig. 2 
are perfectly satisfactory; both are illustrated in Fig. 4. 
Scans lying outside this range would be less easy to 
interpret. 

Separation of Bragg and TDS power: The analysis 
assumes the separability of the Bragg from the TDS 
power: the former is required to give the weighting 
function Wand it is essential that the shape of the lat- 
ter not be influenced by the wings of the Bragg peak. 
Obtaining W to sufficient accuracy would not usually 
be a problem, especially since much of the information 
could be obtained at low angle where the TDS is 
small. The power in the wings of the Bragg reflection 
can be determined from an investigation of the distri- 
bution of power in reciprocal space: for example, the 
true wings lie along rekhas perpendicular to the faces 
of the sample; wavelength spreading along a radius; 
mosaic spreading normal to a radius. Such an investi- 
gation would then allow a separation of the Bragg 
wings from the TDS. 

Background level: The application of the method also 
requires that the first order TDS from acoustic modes 
be separated from the 'background', which consists 
of Compton scattering, air scattering, fluorescence, 
dark current, TDS from optic modes, etc. These latter 

all vary slowly with angle, or can, at least, be corrected 
to a slow variation with angle. Their value is deter- 
mined from the power at the ends of a long scan, e.g. 
of twice the width of the slit. 

Because both the desired area and assumed power 
(A0 and P in Fig. 3) are similarly affected by an error 
in the choice of background level, this choice is not 
very critical. In fact, it is easily seen that, to the extent 
that uc/u= 1, the entire analysis is independent of the 
background level. To illustrate this result, we have 
considered how the points in Fig. 4(a) and (f)  would 
be influenced by an error in the choice of background 
level of three times the TDS power at the ends of the 
long scan suggested above. (This illustration is of an 
unrealistically large error. Use of a realistic error 
would give effects too small to see on Fig. 4.) The points 
of EE, altered to show the effect of such a background 
error, are plotted as E3. To be sure, the points are 
displaced a significant amount. The required intercept 
is displaced a similar amount, however, as shown in 
the Figure. One can see that the additional error 
because of an incorrect choice of background would 
be negligible. 

Multiphonon scattering: The higher order phonon 
processes also produce a diffuse scattering which peaks 
at a relp. The magnitude is smaller than that from first 
order scattering. The second order scattering could, in 
principle, be estimated using preliminary values of L' 
and the methods described by Warren (1969), but if 
such high accuracy were required it would probably 
be better to make a separate study of the elastic prop- 
erties of the crystal. 

6. Summary 

Because of the peaking of TDS, measurements of 
integrated Bragg reflections contain an unwanted 
component. Suitable notation is shown in Fig. 3 where 
areas are measured as fractions of the Bragg reflection. 
The magnitude of the unwanted component is deter- 
mined by geometrical parameters defined in Fig. 1 and 
by sample parameters KH(X) referred to in equation 
(1). Simplification may be achieved by replacing Ks 
by the completely averaged parameter L [equation (2)] 
or the partially averaged parameter L' [equation (7)] 

The appropriate method for evaluating the unwanted 
component depends on the accuracy required, the 
availability of elastic constant data, the tolerability of 
subsidiary experimental work, and the availability of 
computer time. We therefore outline the various pos- 
sibilities. 

Elastic constants known 
The general formulation is given by Rouse & Cooper 

(1969). The computer program of Walker & Chipman 
(1970) takes into account the most important terms, 
first order TDS and experimental resolution, and is of 
manageable proportions. If the sample is approx- 
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imately isotropic or if an accuracy of 15 -50% is all 
that is required, it is simpler to calculate Kavg and 
proceed with the spherical approximation, below. If 
an accuracy of 5 - 20% is required, calculate K',vg for 
each reflection and use the small scan approximation, 
below. 

Average sound velocity known 

Spherical approximation: If Kavg cannot be evaluated 
exactly, it may be estimated from equation (9), from 
the Debye temperature (obtained, for example, from 
preliminary temperature factors), or otherwise. The 
unknown areas in Fig. 3 may then be read directly from 
Fig. 2. A convolution with the experimental resolution 
function would be possible, but would not usually be 
warranted. 

? 

Small scan approximation: If Kavg cannot be evalu- 
ated exactly, it may be estimated from equation (8), 
from the Debye temperature, or otherwise. For small 
scans, with negligible experimental broadening, the 
unknown area may be evaluated immediately from 
equation (7). In contrast to the spherical approxima- 
tion, this procedure is 'exact' if K'avg is known, and it 
may well be worth while to consider experimental 
broadening. Most of § 5 is devoted to this problem as 
summarized below. 

No elastic constant information: In this case, one 
might obtain information by measuring the Debye- 
Waller factor and proceeding as above. Alternatively, 
and more accurately, it is possible to determine the 
unknown coefficient in the small scan approximation 
from the experimental data itself. The basic idea is that 
the form of the TDS power at moderate scans deter- 
mines the form concealed by the Bragg peak. In the 
case that there is negligible experimental broadening 
the method is easy to apply. When there is broadening 
it is necessary to make approximations. We have for- 
mulated the problem in such a fashion that the con- 
volution of the resolution function with the unknown 
sample parameter is replaced by a convolution with 
spherically averaged parameters. The accuracy is illus- 
trated in Fig. 4. 

I thank D. R. Chipman & especially C. B. Walker for 
numerous clarifying discussions, for suggestions con- 
cerning the presentation of the results, and the use of 
their computer program. 

APPENDIX 

Spherical approximation 
Although the necessary formulae have been presen- 

ted by Skelton & Katz (1969), our notation and point 
of view is somewhat different. Therefore, we state the 
required integrals in terms of the parameters defined 
in Fig. 1 and equation (5). Each integral gives, for a 

symmetrical scan, the sum of contributions from op- 
posite faces of the active volume; the total included 
contribution is the sum of 11 and 12. 

R=E2 sin 20/w (Ala) 

O=h/w (Alb) 
N=s in  ~u (Alc) 
M = R / N  (Ald) 

c~s 2RQ ~I dx 
_ .  

Tan -1 2 V ' ( ~ z +  R2 
(Qx) 2 + M 2 - 1 

(A2) 

0~[1 2 a N  flo dx 2MV'(Qx)2 + N  z 
Tan-' (Qx)2-M2+I 

(A3) 

2RW  (Q  i2 ccz__L2 = 2Q _ dx Tan-1 
Lw zc ~/~+(Q/N)Z x 2 + Q 2 - M  z 

(A4) 

For small scans, equation (A2) is not convenient. One 
may write instead 

cos - R  [In G+I+~/JQZ+2G+I 

rc o sin x j  + O \  h2 ! (A5) 

with 
G = M cos p' (A6a) 

Y= 2 tan-a(w/h) (A6b) 

The integral in (A5) depends only on the slit shape and 
may be evaluated from Table 1. 

Table 1. Evaluation of I= ~ (x/sin x)dx 
with Y=2 tan-l(w/h). 

Set I= (2w/h) (1 -~wZ/h2). Then I may be evaluated for various 
w/h = l/Q, using these ? values. 

w/h y 
0 0.1111 

0.2 0.1095 
0.4 0-1052 
0.6 0.0989 
0.8 0.0916 
1.0 0.0840 
1.2 0.0767 
1.4 0.0699 

Small scan approximation 
Comparison of equations (11) to (14) shows that the 

correction parameters e, ucH, and ucL are given by 

sin 20 ,}dx  A7, 
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I W(x)o~s(2uH-2x)dx 
ucz¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (A8) 

I W(x) c~s(2u~-2x) dx 
., U H - - X  

I W(x)o~s(2uL+ 2x)dx 
UCL : (A9) 

I W(x) O~S(2UL + 2x) dx 
UL"]- X 

The explicit arguments of the cds are (2 values; the 
other parameters are understood. 

Since the e's may not be known, our approximation 
is to replace them with the spherically averaged values. 
The term in braces in (A7) may then be obtained as 
the difference between the appropriate curve and its 
asymptote in Fig. 2(b), or analytically from (A3) and 
(A4). The terms in (A8) and (A9) may be read from 
Fig. 2(a) or evaluated from (A5), (A2), or (6). Sur- 

prisingly, the needed quantities may be obtained with 
sufficient accuracy from the Figure, but the process is 
somewhat tedious. 
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Algorithm for Determining the Symmetry and Stacking Properties of the Planes (hkl) 
in a Bravais Lattice 
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An algorithm is presented which enables one to determine in detail the symmetry and stacking properties 
of the planes (hkl) in an arbitrary Bravais lattice characterized by the quantities a, b, c, cos 0e, cos fl, 
cos y. 

1. Introduction 

The problem of mapping a lattice plane was originally 
formulated and solved by Jaswon & Dove (1955) and 
more recently, using the tensor formalism, by Bevis 
(1969). Nevertheless we believe that it is worth con- 
sidering the present procedure since it possesses some 
new and useful features. 

Firstly, all considerations refer to the symmetry of 
the plane (hkl) which was discussed neither by Jaswon 
& Dove nor by Bevis. 

Secondly, our results, unlike those of the above 
authors, are presented in a unique way. This is, of 
course, important when comparing various calcula- 
tions and compiling tables. The following example 
shows it clearly. Jaswon & Dove determine in their 
paper the configuration of the lattice points in the plane 
(295) in a primitive cubic lattice to be a parallelogram 
of edges 1/29 and 1/106 and included angle cos-118/ 
(1/29 x 106). This parallelogram contains four interior 
lattice points in addition to those at its corners. If they 
applied their procedure to the equivalent planes (952) 

and (259) th.ey would have obtained quite different paral- 
lelograms with 1 and 8 interior lattice points,respectively. 
Alternatively the tables obtained from our algorithm 
give the cell of edges 1'19 and 1/6 and included the 
angle cos-l(l /]  f4/57). These numbers are unique, since 
the cell is primitive and has the shortest possible 
perimeter. Also the symmetry of the plane can be readily 
recognized. Moreover it is not immediately patent 
that the results by Jaswon & Dove and ourselves are 
identical. 

Similar comment applies to the procedureof Bevis. 
Though the resulting parallelogram here is without 
interior points, its shape depends on the choice of the 
integers m,, m2, m3 satisfying the Diophantine equation 

m l  u l  -at- m 2 u  2 "Jr- t773 u 3  = l . 

But this equation has infinitely many solutions provided 
the u i are integers without common factor. 

Thirdly our procedure is formulated as an algorithm 
and this way has some advantages, too. The greatest, 
of course, is the possibility of applying a computer 


